BranchSquare.jpg (621611 bytes)
banner.JPG (30152 bytes)
  MI-ASM Home  
     
  National ASM site  
Abstracts Received
 
Identification and prioritization of macrolide resistance genes with hypothetical annotation in Streptococcus pneumoniae
Blue Goad* and Laura Harris
Davenport University, Lansing MI, *Undergraduate researcher
Macrolide resistant Streptococcus pneumoniae infections have limited treatment options. While some resistance mechanisms are well established, ample understanding is limited by incomplete genome annotation (hypothetical genes). Some hypothetical genes encode a domain of unknown function (DUF), a conserved protein domain with uncharacterized function. Here, we identify and confirm macrolide resistance genes. We further explore DUFs from macrolide resistance hypothetical genes to prioritize them for experimental characterization.We found gene similarities between two macrolide resistance gene signatures from untreated and either erythromycin- or spiramycin-treated resistant Streptococcus pneumoniae. We confirmed the association of these gene sets with macrolide resistance through comparison to gene signatures from (i) second erythromycin resistant Streptococcus pneumoniae strain, and (ii) erythromycin-treated sensitive Streptococcus pneumoniae strain, both from non-overlapping data sets. Examination into which cellular processes these macrolide resistance genes belong found connections to known resistance mechanisms such as increased amino acid biosynthesis and efflux genes, and decreased ribonucleotide biosynthesis genes, highlighting the predictive ability of the method used. 22 genes had hypothetical annotation with 10 DUFs associated with macrolide resistance. DUF characterization could uncover novel co-therapies that restore macrolide efficacyacross multiple macrolide resistant species. Application of the methods to other antibiotic resistances could revolutionize treatment of resistant infections.
 
Oral Presentations
 

To be determined in March, 2019

 
Poster Presentation
 
Coming soon!

 
Click here to return to current meeting page.
 
Questions or suggestions concerning website, contact laura.harris@davenport.edu
Last updated: January 12, 2019